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Essence of my talk 

� 

1 
a ∨ na b = lim log(e + e nb)

n→∞ n 
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Essence of my talk 

� 

1 
a ∨ na b = lim log(e + e nb)

n→∞ n 

� Left hand: calculus of variation 

� Right hand: probability 

� A poor man’s version of "everything about Large 
Deviation" 
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Principles of Laplace v.s. Large Deviation 

� The Laplace principle 
 

1
sup f(z) = lim log 

Z
e nf(z)P (dz). 

n→∞ z n∈S S 
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Principles of Laplace v.s. Large Deviation 

� The Laplace principle 
 

1
sup f(z) = lim log 

Z
e nf(z)P (dz). 

n→∞ z n∈S S 

� What if P (dx) := Pn(dx)  e−nI(x)π(dx)? ∼
� LDP : P (Xn  dx)  Z−1e−nI(x)

n π(dx).∈ ∼
� LDP, a functional level re-formulation, 

 
1 n 1 

lim log E[e f(Xn )] = lim log 

Z
en(f−I)(x)π(dx) 

n n n n 
= sup{f(x) − I(x) , f.

x∈S 
} ∀  
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Pressure-Entropy duality, the nature of large deviation 

� Entropy-Pressure duality à la Gibbs: 
 

log 

Z
eg(z)P (dz) = sup g, Q  R(Q P )  

S Q 
{h i − k }
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Pressure-Entropy duality, the nature of large deviation 

� Entropy-Pressure duality à la Gibbs: 
 

log 

Z
eg(z)P (dz) = sup g, Q  R(Q P )  

S Q 
{h i − k }

eg
� Renormalize: let dP g  

:= dP , then 
Zg 

sup{hg, Qi − R(QkP )} = − inf R(QkP g) + log Zg. 
Q Q
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Large Deviation - Rigorous defnition 

Let {Xn : n = 1, 2, . . .} be metric space S-valued r.v.s. 

� There exists lower semicontinuous I : S 7→ [0, +∞] 
satisfying 

1 − inf 
◦

I(x) ≤ lim inf log P (Xn ∈ A◦) 
x A  n n ∈

1 ≤ P X ∈ Ālim sup ( n ) ≤ inf I(x). 
n n 

− 
x∈Ā  

If rate function(or action functional) I has compact 
level set, I is said to be good. 
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Exponential Tightness 

� For each a > 0, there exists a compact Ka ⊂⊂ S 
such that 

1 
lim sup log P (Xn 6∈ Ka) ≤ −a. 

n n
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Exponential Tightness 

� For each a > 0, there exists a compact Ka ⊂⊂ S 
such that 

1 
lim sup log P (Xn 6∈ Ka) ≤ −a. 

n n

� Equivalently (S complete separable metric space), 
for each a > 0 and ǫ > 0, there exists Ka,ǫ ⊂⊂ S, 

1 
lim sup log P (Xn 6∈ Kǫ 

a,ǫ ) ≤ −a
n n
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The Laplace Principle 

{Xn : n = 1, 2, . . .} is S-valued (S is Polish) 

� (Varadhan) {Xn : n = 1, 2, . . .} satisfes LDP with 
good rate function I, then 

1 
lim log E[e nf(Xn)] = sup{f(x) − I(x)}. 
n n x∈S 
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The Laplace Principle 

{Xn : n = 1, 2, . . .} is S-valued (S is Polish) 

� (Varadhan) {Xn : n = 1, 2, . . .} satisfes LDP with 
good rate function I, then 

1 
lim log E[e nf(Xn)] = sup{f(x) − I(x)}. 
n n x∈S 

� (Bryc) Let {Xn : n = 1, 2, . . .} be exponentially tight, 

1 
�(f) = lim log E[enf(Xn)], f ∈ D ⊂ C (S). 

n n b

Then {Xn : n = 1, 2, . . .} satisfes LDP with good 
rate function I(x) = supf∈Cb(S){f(x) − �(f)}. 
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Smaller class of test functions D ⊂ Cb(S) 

Defnition: D ⊂ Cb(S) is rate function determining if 

sup{f(x) − �(f)} = sup {f(x) − �(f)}. 
f∈D f∈Cb(S) 

� Useful test functions are of the form −md(x, ·) ... 
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In the following talk, 

� Xn(·) is a sequence of Markov processes, hence 

S := DE[0, ∞). 
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Outline of main result: 

� Basic setup 
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Outline of main result: 

� Basic setup 

1. En, E are complete separable metric spaces; 

2. for each n, Yn(·) is En-valued Markov Process 
with (MGP) generator An; 

3. ηn : En 7→ E and Xn(t) := ηn(Yn(t)) = ηn ◦ Yn(t) is 
E-valued process; 

� Main questions: 

1. Can we derive large deviation behavior of 
{Xn(·) : n = 1, 2, . . .} based on information in 
sequence of operators {An : n = 1, 2, . . .}? 

2. What is its connection with variational problems? 
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Take the case E = En and ηn = I, so 
Xn(t) := ηn(Yn(t)) = Yn(t): 

� One step transition determines everything 

1 
(V (t)f)(x) := log E[e nf(Xn(t))

n |Xn(0) = x]. 
n 

Large deviation for Markov processes {Yn(·) : n = 1, 2, . . .} 
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Large deviation for Markov processes {Yn(·) : n = 1, 2, . . .} 

Take the case E = En and ηn = I, so 
Xn(t) := ηn(Yn(t)) = Yn(t): 

� One step transition determines everything 

1 
(V (t)f)(x) := log E[e nf(Xn(t))

n |Xn(0) = x]. 
n 

� Vn is a semigroup 

Vn(t + s) = Vn(t)Vn(s). 

� Vn is the Nisio semigroup by entropy-pressure dual 

 dQx

( Qx

Vn(t)f x) = sup E n[f(Xn(t)) − log n |F n(Xn( ))] 
t

 
dP x 

Qx
n n

·
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Large deviation for Markov processes {Yn(·) : n = 1, 2, . . .} 

� Therefore convergence of Vn would imply LDP 
(needs exponential tightness, why?) 
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1 1 
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Large deviation for Markov processes {Yn(·) : n = 1, 2, . . .} 

� Therefore convergence of Vn would imply LDP 
(needs exponential tightness, why?) 

� What happened infnitesimally? 

1 1 
m    li (Vn(t)f(x) − f(x)) = e−nfAne nf(x) := Hnf(x) 

t→0+ t n 

� Here is a program for LDP: 

1.(Hn → H) + 2.( exp. tight.) + 3.(HJ equations) 

⇒ LDP. 
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Large deviation for Markov processes {Yn(·) : n = 1, 2, . . .} 

� Rate function? Vn → V is Nisio semigroup 
convergence and 

 t 
R(QxkP xn n ) → 

Z
L(x(s), u(s))ds := I(x(·)) 

0 

and 
 t 

V (t)f(x) = sup{f(x(t)) − 
u

Z
L(x(s), u(s))ds : x(0) = x} 

 0 
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Large deviation for Markov processes {Yn(·) : n = 1, 2, . . .} 

� Rate function? Vn → V is Nisio semigroup 
convergence and 

 t 
R(QxkP xn n ) → 

Z
L(x(s), u(s))ds := I(x(·)) 

0 

and 
 

V (t)f(x) = sup
u
{f(x(t)) − 

 

Z t 

L(x(s), u(s))ds : x(0) = x} 
0 

� In general, relaxed control (Young measure) 
replacing u... 
One can completely formulate a program on 
co-tangent space (Hamiltonian equations) until the 
limit for representation .. 
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Entropy-Pressure Dual at infnitesimal level 

Fleming- Sheu’s logarithmic transformation : 

� Hf := e−f Aef ; 
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Entropy-Pressure Dual at infnitesimal level 

Fleming- Sheu’s logarithmic transformation : 

� Hf := e−f Aef ; 

� Agf := e−gA(feg) − (e−gf)Aeg; 

� g) − (e−gLg := Agg − Hg = e−gA(ge g)Aeg − e−gAeg; 

� Then, by maximum principle, 

Hf(x) = sup (Agf(x) − Lg(x)) 
g 

Lg(x) = sup (Agf(x) − Hf(x)). 
f 

A Hamilton Jacobi equation approachtoLarge Deviation of Markov Processes p.14/29 



- –

What’s going on? 

� Normalizing transition measure (g as a control) 

P ; eg(y)g P (t;x,dy) (t x, dy) := . R
eg(z)P (t;x,dz) 
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What’s going on? 

� Normalizing transition measure (g as a control) 

P ; eg(y)g P (t;x,dy) (t x, dy) := . R
eg(z)P (t;x,dz) 

� 

g

Ag   
f(x) := lim EPx [f(X(t)) − f(X(0))] 

t→0+ 

Ex[eg(X(t))(f(X(t)) − f(X(0)))] 
= lim 

x (t→ g X(t))0+ E [e ]

= e −gA(feg)(x) − (e −gf)Aeg(x); 

Lg(x) := lim R(P g(t; x, ·)kP (t; x, ·)) = ... 
t→0+ 

= Agg(x) − Hg(x). 
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Diffusion Example 

� An = √1 �+ b · ∇,
n 
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Diffusion Example 

� An = √1 �+ b · ∇,
n 

� H f = √1 �f + b∇f + 1 |∇f |2 n ,
n 2 
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Diffusion Example 

� A √1 n = � + b 
n · ∇,

� H √1 �f + b 1
n ∇f + 2 |∇f |2 nf = , 

� L 1
2 |∇g|2ng = , 
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Diffusion Example 

� A √1 n = � + b 
n · ∇,

� H √1 1
n 2 |∇f |2 nf = �f + b∇f + ,

� L 1
2 |∇g|2ng = , 

� Ag f(x) = √1 n �f(x) + (b + 
n ∇g) · ∇f(x)

� Hnf(x) = sup {Ag f(x) − Lng(x)}g n 

� Embedding (reduction) of control space to Rd: 

1 1 
Hnf(x) = sup{√ �f(x) + (b(x) + u) · ∇f(x) − |u 2

 

}. 
u n 2∈Rd

|
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A pure jump example 

� Take Af(x) := λ(x)
R
(f(y) − f(x))η(x, dy). 
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A pure jump example 

� Take Af(x) := λ(x)

� w.l.o.g., all Markov 

R
(f(y) − f(x))η(x, dy). 

processes can be approximated 

by such form by Yosida appro. Aǫ = A(I − ǫA)−1 . 

� Infnitesimal change of measure 
g  (  ) := e

g ( y)
η x, dy

eg(x) η(x, dy). 

� Hf(x) = λ(x)

� Agf(x) = λ(x)

R
(ef(y)−f(x) − 1)η(x, dy). R
(f(y) − f(x))ηg(x, dy). 

 R
−  g(y) −  g(y) 

� Lg(x) = λ(x) ((g(y) g(x))e e
eg(x) eg(x) + 1)η(x, dy)

= λ(x)R(ηg(x, ·)kη(x, ·)). 
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Nonlinear semigroup via viscosity solution language 

Let 

(I − αHn)fn = hn, (I − αH)f = h. 

� Suppose we know that, if hn → h and H ⊂ limn Hn 

(what sense?), then 
fn = (I − αHn)

−1hn → f = (I − αH)−1h. 
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Nonlinear semigroup via viscosity solution language 

Let 

(I − αHn)fn = hn, (I − αH)f = h. 

� Suppose we know that, if hn → h and H ⊂ limn Hn 

(what sense?), then 
fn = (I − αHn)

−1hn → f = (I − αH)−1h. 

� Then 

t 
lim Vn(t)hn = lim lim (I − Hn)

−mhn 
n→∞ n m→∞ m 

t  t  = lim lim(I − Hn )
−mhn = lim(I − H )−m

n h 
m n m m m 

= V (t)h 
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What is viscosity solution in this context? 

Problem: E is just a Polish space. 
Solution: Use (nonlinear) maximum principle. 

� f, g ∈ M(E), 

[f, g]+ := inf ǫ−1(kf + ǫgk − kfk), 
ǫ>0 

[f, g]− := sup ǫ−1(kf + ǫgk − kfk). 
ǫ<0 
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What is viscosity solution in this context? 

Problem: E is just a Polish space. 
Solution: Use (nonlinear) maximum principle. 

� f, g ∈ M(E), 

[f, g]+ := inf ǫ−1(kf + ǫgk − kfk), 
ǫ>0 

[f, g]− := sup ǫ−1(kf + ǫgk − kfk). 
ǫ<0 

� H ⊂ M(E) × M(E) has maximum principle: 

[f1 − f2, g1 − g2]± ≤ 0, ∀(fi, gi) ∈ H; 
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Viscosity solution 

For (I − αH)f = h. 

� [f − f0, Hf − Hf0]− ≤ 0. 
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Viscosity solution 

For (I − αH)f = h. 

� [f − f0, Hf − Hf0]− ≤ 0. 

� If sup (f − f0) ≥ 0, ⇒ sub-solution ... x 

� If sup (f0(x) − f(x)) ≥ 0, ⇒ super-solution... x 

� An exercise: Write down the precise expression ... 
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Barles-Perthame half relaxed limit, an abstract new proof 

� Consider, for COMPACT E, 

(I − αHn)fn = hn, (I − αH)f = h. 

Q: Suppose hn → h and Hn → H, does fn → f? 
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Barles-Perthame half relaxed limit, an abstract new proof 

� Consider, for COMPACT E, 

(I − αHn)fn = hn, (I − αH)f = h. 

Q: Suppose hn → h and Hn → H, does fn → f? 

� Minty’s device method by L.C.Evans: 

[fn − f0, Hnfn − Hnf0]− ≤ 0 ⇒ [f − f0, Hf − Hf0]− ≤ 0. 
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Barles-Perthame half relaxed limit, an abstract new proof 

� Consider, for COMPACT E, 

(I − αHn)fn = hn, (I − αH)f = h. 

Q: Suppose hn → h and Hn → H, does fn → f? 

� Minty’s device method by L.C.Evans: 

[fn − f0, Hnfn − Hnf0]− ≤ 0 ⇒ [f − f0, Hf − Hf0]− ≤ 0. 

� Barles and Perthame: 

f̄ (x) := lim sup fn(y), f := lim inf fn(y) 
 n,yn,y x →x→

(I − αH)f̄  ≤ h, (I − αH)f ≥ h. 

f = f = f? Answer: Comparison Principle. 
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The noncompact E case 

� Idea: Use concentration on compact set property of 
probability measures: 
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probability measures: 

� Instead of 

kfn − f0k ≤ kfn − αHnfn − (f0 − αHnf0)k, 
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The noncompact E case 

� Idea: Use concentration on compact set property of 
probability measures: 

� Instead of 

kfn − f0k ≤ kfn − αHnfn − (f0 − αHnf0)k, 
� we want ∀ K ⊂⊂ E and ǫ > 0, ∃ Kǫ ⊂⊂ E, s.t. 

sup |fn(x) − f0(x)| 
x∈K0 

≤ ǫ + sup |fn(y) − αHnfn(y) − (f0(y) − αHnf0(y))|. 
y∈Kǫ 

A Hamilton Jacobi equation approachtoLarge Deviation of Markov Processes p.22/29 



- –

The noncompact E case 

� Idea: Use concentration on compact set property of 
probability measures: 

� Instead of 

kfn − f0k ≤ kfn − αHnfn − (f0 − αHnf0)k, 
� we want ∀ K ⊂⊂ E and ǫ > 0, ∃ Kǫ ⊂⊂ E, s.t. 

sup |fn(x) − f0(x)| 
x∈K0 

≤ ǫ + sup |fn(y) − αHnfn(y) − (f0(y) − αHnf0(y))|. 
y∈Kǫ 

� This a priori estimate comes from exponential 
tightness. 
Why? 
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Exponential Tightness 

Main ideas: stochastic generalization of Ascoli-Arzela: 

� Modulus of continuity estimate follows from 
Hn → H; 
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Exponential Tightness 

Main ideas: stochastic generalization of Ascoli-Arzela: 

� Modulus of continuity estimate follows from 
Hn → H; 

� Exponential compact containment (construct 
Lyapunov funct.); 
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Exponential Tightness 

Main ideas: stochastic generalization of Ascoli-Arzela: 

� Modulus of continuity estimate follows from 
Hn → H; 

� Exponential compact containment (construct 
Lyapunov funct.); 

� Usually all follow from supn sup fn < ∞ for x Hn 

"wise" choices of fns. 
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First version (there are 2nd, 3rd, ...) of the LDP theorem 

{Xn(·) : n = 1, 2, . . .} are E-valued processes that 
solves martingale problem with generator An. 

�
1 −nf Ane

nf  Compute Hnf = e ;
n 

A Hamilton Jacobi equation approachtoLarge Deviation of Markov Processes p.24/29 



- –

First version (there are 2nd, 3rd, ...) of the LDP theorem 

{Xn(·) : n = 1, 2, . . .} are E-valued processes that 
solves martingale problem with generator An. 

�
1 −nf Ane

nf  Compute Hnf = e ;
n 

� Verify H ⊂ limn Hn (in some appropriate sense); 
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{Xn(·) : n = 1, 2, . . .} are E-valued processes that 
solves martingale problem with generator An. 

�
1 −nf Ane

nf  Compute Hnf = e ;
n 

� Verify H ⊂ limn Hn (in some appropriate sense); 

� Verify exponential tightness (usually follows from 
previous step); 
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First version (there are 2nd, 3rd, ...) of the LDP theorem 

{Xn(·) : n = 1, 2, . . .} are E-valued processes that 
solves martingale problem with generator An. 

�
1 −nf Ane

nf  Compute Hnf = e ;
n 

� Verify H ⊂ limn Hn (in some appropriate sense); 

� Verify exponential tightness (usually follows from 
previous step); 

� Verify comparison principle: i.e. 

(I − αH)f ≤ h, and(I − αH)f ≥ h implies f ≤ f. 
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First version (there are 2nd, 3rd, ...) of the LDP theorem 

{Xn(·) : n = 1, 2, . . .} are E-valued processes that 
solves martingale problem with generator An. 

�
1 −nf Ane

nf  Compute Hnf = e ;
n 

� Verify H ⊂ limn Hn (in some appropriate sense); 

� Verify exponential tightness (usually follows from 
previous step); 

� Verify comparison principle: i.e. 

(I − αH)f ≤ h, and(I − αH)f ≥ h implies f ≤ f. 

� LDP holds for {Xn(·) : n = 1, 2, . . .}. 
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The rate function 

� First, 

k  
I(x(·)) = sup {I0(x(0)) + 

X
Iti ti−1 (x(t ) x(t ))  

t0,t1,...,tk �c 
x 

− i | i−1 }
∈

i=1 

 where �c
x is continuity time points of path x(·) and 

It(y|x) = sup{f(y) − V (t)f(x)}. 
f∈D 
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The rate function 

� First, 

k  
I(x(·)) = sup {I0(x(0)) + 

X
Iti ti−1 (x(t ) x(t ))  

t0,t1,...,tk �c 
x 

− i | i−1 }
∈

i=1 

 where �c
x is continuity time points of path x(·) and 

It(y|x) = sup{f(y) − V (t)f(x)}. 
f∈D 

� Second, {V (t) : t ≥ 0} is a variational semigroup 
(the Nisio semigroup), so I should have a 
variational action integral representation. 
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The rate function and Nisio semigroup 

Recall the infnitesimal entropy-pressure dual (always) 

Hnf(x) = sup {An
g f(x) − Lng(x)}. 

g∈D(H) 

Idea: embed function space D(H) into a nicer one. 

� A 1
n = �,then Hn is associated with (U = D(Hn))2n 

1 
dXn = ∇g(t, Xn(t))dt + √ dWn, 

n 
1 

L(Xn(t), g(t, Xn(t))) = |∇g(t, Xn(t))|2 . 
2 
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The rate function and Nisio semigroup 

Recall the infnitesimal entropy-pressure dual (always) 

Hnf(x) = sup {An
g f(x) − Lng(x)}. 

g∈D(H) 

Idea: embed function space D(H) into a nicer one. 

� A 1
n = 2 n �,then Hn is associated with (U = D(Hn)) 

1 
dXn = ∇g(t, Xn(t))dt + √ dWn, 

n 
1 

L(Xn(t), g(t, Xn(t))) = |∇g(t, Xn(t))|2 . 
2 

� We could take U = Rd , dX 1
n √  = udt + dWn and 

n 

L(x, u) = 12 |u|2 .
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The rate function and Nisio semigroup - II 

� Assume ∃ metric space U , Af : E × U 7→ R and 
L : E × U 7→ R ∪ {+∞} s.t. 

Hf(x) = sup{Af(x, u) − L(x, u)} 
u∈U 
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The rate function and Nisio semigroup - II 

� Assume ∃ metric space U , Af : E × U 7→ R and 
L : E × U 7→ R ∪ {+∞} s.t. 

Hf(x) = sup{Af(x, u) − L(x, u)}
u∈U 

� Then Z
V (t)f(x) = sup {f(x(t)) − L(x, u)µ(du|s)ds}

x(·),µ(·)∈�x [0,t]×U
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The rate function and Nisio semigroup - II 

� Assume ∃ metric space U , Af : E  U  R and 
L : E × U 7→ R 

× 7→
∪ {+∞} s.t. 

Hf(x) = sup {Af(x, u)  
u U

− L(x, u)} 
∈  

� Then 
 

V (t)f(x) = sup {f(x(t)) − 
Z

L(x, u)µ(du s)ds  
x(·),µ(·)∈�x [0,t]×U 

| }

� �x means solving a controlled functional eqn 

 
f(x(t))−f(x(s)) = 

Z t Z
Af(x(r), u)µ(du r)dr, ( 

s U 
| ∀f ∈ D
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The rate function and Nisio semigroup - III 

� 

{
Z T 

I(x(·)) = inf  
Z

L(x(s), u)µ(du s)ds : 
0 U 

|

(x(·), µ(·)) ∈ �x(0)}. 
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The rate function and Nisio semigroup - III 

� 

I

Z T 

(x(·)) = inf{ 
Z

L(x(s), u)µ(du|s)ds : 
0 U 

(x(·), µ(·)) ∈ �x(0)}. 
� To rigororize above: comparison principle for 
(I − αH)f = h. 
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What is the catch 

� Classical LDP approach – analysis in path space 
(tangent space analysis) 
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� Classical LDP approach – analysis in path space 
(tangent space analysis) 

� This approach : More emphasize on analysis on 
function space (co-tangent space analysis). 
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(tangent space analysis) 

� This approach : More emphasize on analysis on 
function space (co-tangent space analysis). 

� variations on path v.s. variations on test functions 
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What is the catch 

� Classical LDP approach – analysis in path space 
(tangent space analysis) 

� This approach : More emphasize on analysis on 
function space (co-tangent space analysis). 

� variations on path v.s. variations on test functions 

� Technical subtlety: replace approximation for paths 
by proof of comparison principle for PDEs. 
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