A Hamilton-Jacobi equation approach
to
Large Deviation of Markov Processes

Jin Feng (joint work with Tom Kurtz, U. Wisconsin )

Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA

June 5th, Kac Lecture at Utrech University, the Netherlands

A Hamilton Jacobi eauation anoroachtolLarae Deviation of Markov Processes n.1/29



Essence of my talk

|
a Vb= lim —log(e"" + ")

n—oo N,

A Hamilton Jacobi eauation anoroachtolLarae Deviation of Markov Processes n.2/29



Essence of my talk

1
aV b= lim —log(e" + ™)

n—oo N,

Left hand: calculus of variation

A Hamilton Jacobi eauation anoroachtolLarae Deviation of Markov Processes n.2/29



Essence of my talk

1
aV b= lim —log(e" + ™)

n—oo N,

Left hand: calculus of variation
Right hand: probability

A Hamilton Jacobi eauation anoroachtolLarae Deviation of Markov Processes n.2/29



Essence of my talk

|
a Vb= lim —log(e"" + ")

n—oo N,

Left hand: calculus of variation
Right hand: probability

A poor man’s version of "everything about Large
Deviation"
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Principles of Laplace v.s. Large Deviation

The Laplace principle

1
sup f(z) = lim —log/Se”f(z)P(dz).

2cS n—oo 1)

A Hamilton Jacobi eauation anoroachtolLarae Deviation of Markov Processes pn.3/29



Principles of Laplace v.s. Large Deviation

The Laplace principle

1
sup f(z) = lim —log/Se”f(z)P(dz).

2cS n—oo 1)

What if P(dz) := P,(dz) ~ e @7 (dz)?



Principles of Laplace v.s. Large Deviation

The Laplace principle

1
sup f(z) = lim —log/Se”f(z)P(dz).

2cS n—oo 1)

What if P(dz) := P,(dz) ~ e @7 (dz)?
LDP : P(X,, € dz) ~ Z'e ™ @) (dx).



Principles of Laplace v.s. Large Deviation

The Laplace principle

1
sup f(z) = lim —log/Se”f(z)P(dz).

2cS n—oo 1)

What if P(dz) := P,(dz) ~ e @7 (dz)?
LDP : P(X,, € dz) ~ Z'e ™ @) (dx).
LDP. a functional level re-formulation,

1 1
lim — log E[e™ %)) = hm—log/en(f_l)(x)ﬂ(dx)

n n no 1

= supyf(z) = I(2)}, Vf

xeS
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Pressure-Entropy duality, the nature of large deviation

Entropy-Pressure duality a la Gibbs:

log /S e#9P(d2) = sup{(9. Q) ~ R(Q|IP)

Renormalize: let dP?9 := <dP, then

up{ (g, Q) ~ R(QIP)} =~ inf R(Q|IP?*) +1og 7,



Large Deviation - Rigorous definition

Let {X,,:n=1,2,...} be metric space S-valued r.v.s.

There exists lower semicontinuous [ : S — [0, +o0]
satisfying

|

— inf I(x) < liminf—log P(X, € A°)
reA° n n
1 .
<limsup—P(X, € A) < —inf I(x).
n n rxeA

If rate function(or action functional) I has compact
level set, I is said to be good.
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Exponential Tightness

For each a > 0, there exists a compact K, CC S
such that
1
limsup — log P(X,, ¢ K,) < —a.
T

n
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Exponential Tightness

For each a > 0, there exists a compact K, CC S
such that

|
limsup — log P(X,, ¢ K,) < —a.
n

n

Equivalently (S complete separable metric space),
for each a > 0 and € > 0, there exists K, CC S,

1
limsup —log P(X, € K .) < —a
n Y

(1
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The Laplace Principle

{X,:n=1,2,...}is S-valued (S is Polish)
(Varadhan) {X, : n=1,2,...} satisfies LDP with
good rate function I, then

lim . log E[e™ %] = sup{ f(z) — I(z)}.

non xeS
(Bryc) Let {X,, : n=1,2,...} be exponentially tight,
A(f) = 1imllogE[e”f(X”)], feDcCCy).

no 1

Then {X, :n=1,2,...} satisfies LDP with good
rate funC“On ](ZC) — Supfeob(s){f(ﬁlf) — A(f)}



Smaller class of test functions D € Cy(S)

Definition: D C (C3(S) is rate function determining if

sup{f(z) = A(f)} = sup {f() ACf)}-

feD feCy(S5)

Useful test functions are of the form —md(z, ) ...
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In the following talk,

X, (+) is a sequence of Markov processes, hence

S = DE[O, OO)
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Outline of main result:

Basic setup

1. E,, E are complete separable metric spaces;

2. for each n, Y,,(-) is E,-valued Markov Process
with (MGP) generator A,,;

3. n,: By, — Fand X, (t) :=n,(Y.(t)) =n,0Y,(t) IS
FE-valued process;

Main questions:

1. Can we derive large deviation behavior of
{X,.(-) :n=1,2,...} based on information in
sequence of operators {4, :n=1,2,...}7

2. What is its connection with variational problems?
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Large deviation for Markov processes {Y,,(:) : n=1,2,...

Take the case £ = F,, and n, = I, sO
X, (1) 1= 1 (Ya(t)) = Ya(t):
One step transition determines everything

(Va(0)f) () = ~ log Ele" )| x,,(0) = x].

n
V., IS a semigroup
Vit + s) = V() V,a(s).
V., Is the Nisio semigroup by entropy-pressure dual

Vilt) (@) = sup B LF(X,(0)) = log G221 (X,0)



Large deviation for Markov processes {Y,,(:) : n=1,2,...

Therefore convergence of V,, would imply LDP
(needs exponential tightness, why?)
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Large deviation for Markov processes {Y,,(:) :n=1,2,...}

Therefore convergence of V,, would imply LDP
(needs exponential tightness, why?)

What happened infinitesimally?

lim ~(V,(0f(z) — f(z)) = —e " A,e™ (z) = H, ()

t—0+ ¢ n

Here is a program for LDP:

1.(H, — H) + 2.( exp. tight.) + 3.(HJ equations)
= LDP.



Large deviation for Markov processes {Y,,(:) :n=1,2,...}

Rate function? V,, — V' is Nisio semigroup
convergence and

R(Q|I1Ey) — /O L(z(s),u(s))ds := I(z(-))
and
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Large deviation for Markov processes {Y,,(:) :n=1,2,...}

Rate function? V,, — V' is Nisio semigroup
convergence and

R(QuII1Fy) — /O L(z(s), u(s))ds := I(x(-))

and
4

V(t)f(z) = sup{f(z(¢)) - O L(z(s),u(s))ds : 2(0) = =}
In general, relaxed control (Young measure)

replacing w...

One can completely formulate a program on
co-tangent space (Hamiltonian equations) until the
limit for representation ..



Entropy-Pressure Dual at infinitesimal level

Fleming- Sheu’s logarithmic transformation :
Hf :=eTAel;
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Entropy-Pressure Dual at infinitesimal level

Fleming- Sheu’s logarithmic transformation :
Hf :=eTAel;
AIf :=e 9A(feI9) — (e79f)AeI;
Lg:= A% — Hg=e9A(ged) — (e 9g)Ae? — e 9 AeY;
Then, by maximum principle,

Hf(z) = Sup (A7 f(z) — Lg(z))

Lg(x) Sup (A7f(z) — H f(2)).



What's going on?

Normalizing transition measure (g as a control)

eI P(t:x.d
PI(t;x,dy) = feg(z)fg(tmg;)-
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What's going on?

Normalizing transition measure (g as a control)

eI P(t:x.d
PI(t;x,dy) = feg(z)fg(t%g;)-

Af(x) = Jim EP[F(X(1) — f(X(0))
o BN O(X (1) — f(X(0)

50+ Ee[esX @)

= CUA(fE)(@) - () A 2);

Lg(x) = thr(iR(Pg(t x, )| P(t;x,-))

= Alg(x) — Hg(x).



Diffusion Example

_ 1 LB
An—\/ﬁA|bv,
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Diffusion Example

_ 1 LB
An—\/ﬁA|bv,

Hof = LA +09f + 3V /2
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Diffusion Example

_ 1 LB
A, = \/EA -0 -V,
Hof = LAf+0Vf + 3 V1P

Lng — %’ngs
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Diffusion Example

Ay=-LA+b-V,

L
H,f = J=Af +0Vf + 3|V

Lng — %’Vg‘Qs

Al f(x) = =Af(x) + (b+ Vg) - Vf(z)

n



Diffusion Example

_ 1 LB
An—\/ﬁAJ)V,

H,f = J=Af +0Vf + 3|V
Lng — %’Vg‘Qs
A f(x) = ZAf(x) + (b+ Vg) - V()

n

H, f(x) = sup 4 Aj f(z) — Lng(x)}




Diffusion Example

_ 1 L b
A, = \/EA -0 -V,
Hof = LAf+69f + VI
Lng — %’ngs

A9 f(x) = =Af(2) + (b+ Vg) - V()

n

Hy, f(z) = sup {Af f(x) — Lng(®)}
Embedding (reduction) of control space to R“:

H, () = sup{——

sup{Z=Af(x) + (ba) + ) - V() = 5lul?}



A pure jump example

Take Af(x) := Az) [(f(y) — f(z))n(x,dy).
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A pure jump example

Take Af(x) := Az) [(f(y) — f(z))n(x,dy).

w.l.0.g., all Markov processes can be approximated
by such form by Yosida appro. A, = A(] —eA) 1.
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A pure jump example

Take Af(x) := Az) [(f(y) — f(z))n(x,dy).

w.l.0.g., all Markov processes can be approximated
by such form by Yosida appro. A, = A(I — eA)™!

Infinitesimal change of measure

1w, dy) = S, dy).

Hf(z) = () [ (/@) — 1)n(z, dy).

A f(x) = Mz) [(f(y) — f(@)n’(z, dy).
)

Lo(z) = Mz) [ ((9(y) — 9(x)) m — 2 + 1)z, dy)
= \z)R(n?(z,)||n(z, ).




Nonlinear semigroup via viscosity solution language

Let
([ —aH,)f,=h, ([I—aH)f=nh.

Suppose we know that, if h,, — h and H C lim,, H,
(what sense?), then
fo=—aH,) h, = f = —aH) " h.



Nonlinear semigroup via viscosity solution language

Let
([ —aH,)f,=h, ([I—aH)f=nh.

Suppose we know that, if h,, — h and H C lim,, H,
(what sense?), then
fo=—aH,) h, = f = —aH) " h.

Then

t
lim V,(t)h, =lim lim (I — —H,) "h,

n—oo n m—0oo T
t t
= limlim(/ — —H,) "h, =lim(I — —H,) "h
m n m ug m
V(t)h



What is viscosity solution in this context?

Problem: E is just a Polish space.
Solution: Use (nonlinear) maximum principle.

f.g € M(E),
f.9

f.9

o= inf e (1 +egl = 171D,

= supe (|f +egll = IFID.

e<0

A Hamilton Jacobi eauation anproachtolLarae Deviation of Markov Processes

p.19/29



What is viscosity solution in this context?

Problem: E is just a Polish space.
Solution: Use (nonlinear) maximum principle.

f.g € M(E),
f.9

f.9

H C M(F) X

+ o= dnf e ((Lf + egll = 111D,

- = supe (|f +egll = £
e<0

M (FE) has maximum principle:

11— fo, 1 — g2)x <0, V(fi,9:) € H;

A Hamilton Jacobi eauation anproachtolLarae Deviation of Markov Processes

p.19/29



Viscosity solution

For (I —aH)f = h.
S —=Jfo, Hf — H fo]- <0.
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Viscosity solution

For (I —aH)f = h.

S = fo, Hf — H fo]- <0.
If sup..(f — fo) = 0, = sub-solution ...
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Viscosity solution

For (I —aH)f = h.

f—Jo, Hf — Hfp]- <0.
f sup.(f — fo) > 0, = sub-solution ...

f sup,(fo(z) — f(z)) > 0, = super-solution...
An exercise: Write down the precise expression ...



Barles-Perthame half relaxed limit, an abstract new proof
Consider, for COMPACT FE,
(I—aH,)f,=h, (I—aH)f=h.
Q: Suppose h,, — h and H,, — H, does f,, — f?



Barles-Perthame half relaxed limit, an abstract new proof

Consider, for COMPACT FE,
(I —aH,)fn,=h, {[{—aH)f=Ah.

Q: Suppose h,, — h and H, — H, does f, — [?
Minty’s device method by L.C.Evans:

Jn— fo. Hofn — Hofol- < 0= |f — fo, Hf — H fo]- <0.



Barles-Perthame half relaxed limit, an abstract new proof
Consider, for COMPACT FE,
([l —aH,)f,=h, ([I—aH)f=nh.

Q: Suppose h,, — h and H, — H, does f, — [?
Minty’s device method by L.C.Evans:

o — Jo. Hofn — Hyufol- < 0= |f — fo, Hf — Hfo]- <0.
Barles and Perthame:

f(z) :=limsup fu(y), [:=lminf f,(y)

n,Y—x 1Y

(I —aH)f<h, (I—aH)f>h

f = f = f? Answer: Comparison Principle.



The noncompact £ case

ldea: Use concentration on compact set property of
probability measures:
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The noncompact £ case

ldea: Use concentration on compact set property of
probability measures:

Instead of

an — fOH < an —aH, f, — (fO — OéanO)Ha
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The noncompact £ case

ldea: Use concentration on compact set property of
probability measures:

Instead of

an — fOH < an —aH, f, — (fO — OéanO)Ha

wewantV K CC Fande > 0,d K. CC FE, s.i.

sup | fu(7) = fo(2)]

re Ky

< e+ sup | fu(y) — aH, fuly) — (foly) — aH, fo(y))]-

ye K,



The noncompact £ case

ldea: Use concentration on compact set property of
probability measures:

Instead of

an — fOH < an —aH, f, — (fO — OéanO)Ha

wewantV K CC Fande > 0,d K. CC FE, s.i.

sup | fu(7) = fo(2)]

re Ky

< e+ SUp | faly) — aHy fu(y) — (fo(y) — aHyfo(y))]-

This a priori estimate comes from exponential

tightness.
Why?



Exponential Tightness

Main ideas: stochastic generalization of Ascoli-Arzela:

Modulus of continuity estimate follows from
H, — H;
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Exponential Tightness

Main ideas: stochastic generalization of Ascoli-Arzela:

Modulus of continuity estimate follows from
H, — H;

Exponential compact containment (construct
Lyapunov funct.);
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Exponential Tightness

Main ideas: stochastic generalization of Ascoli-Arzela:

Modulus of continuity estimate follows from
H, — H;

Exponential compact containment (construct
Lyapunov funct.);

Usually all follow from sup,, sup, H, f,, < oo for
"wise" choices of f,s.
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First version (there are 2nd, 3rd, ...) of the LDP theorem

{X,.(-) :n=1,2,...} are E-valued processes that
solves martingale problem with generator A,,.

Compute H, f = te " A,e"/;
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First version (there are 2nd, 3rd, ...) of the LDP theorem

{X,.(-) :n=1,2,...} are E-valued processes that
solves martingale problem with generator A,,.

Compute H, f = e A, e";
Verity H C lim,, H,, (iIn some appropriate sense);
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First version (there are 2nd, 3rd, ...) of the LDP theorem
{X,.(:):n=1,2,...} are E-valued processes that
solves martingale problem with generator A,,.

Compute H, f = te " A,e"/;

Verity H C lim,, H,, (In some appropriate sense);

Verity exponential tightness (usually follows from
previous step);

Verify comparison principle: i.e.
(I —aH)f <h, and(I —aH)f > himplies f < f.
LDP holds for { X,,(-) : n=1,2,...}.



The rate function

First,

[(x(-)) = sup lo(z +th i () |2(ti1)) }

I NART thAC
where A° is continuity time points of path z(-) and

Li(y|z) = sup{ f(y) = V(t) f(x)}.
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The rate function

First,

[(x(-)) = sup lo(z +th i () |2(ti1)) }

I NART thAC
where A° is continuity time points of path z(-) and

Li(y|z) = sup{ f(y) = V(t) f(x)}.

febD

Second, {V () : t > 0} is a variational semigroup
(the Nisio semigroup), so I should have a
variational action integral representation.



The rate function and Nisio semigroup

Recall the infinitesimal entropy-pressure dual (always)

Hof(x) = sup {ALf(x) — Lug(x)}.

geD(H)
ldea: embed function space D(H) into a nicer one.
A, = 5-Athen H, is associated with (U = D(H,,))

1
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dX, = Vg(t, X, (t))dt + —=dW,,



The rate function and Nisio semigroup

Recall the infinitesimal entropy-pressure dual (always)

Hof(x) = sup {ALf(x) — Lug(x)}.

geD(H)
ldea: embed function space D(H) into a nicer one.
A, = 5-Athen H, is associated with (U = D(H,,))

1
/n
LOX(t), 9t X,(0))) = 5|V alt, Xa(0)-

dX, = Vg(t, X, (t))dt + —=dW,,

We could take U = R?, dX,, = udt + ﬁde and

L(z,u) = £|ul?



The rate function and Nisio semigroup - Il

Assume d metric space U, Af : E x U — R and
L:ExUwr~ RU{+0c0} s.t.

Hf(x) = sup{Af(z,u) — L(z,u)}

uwelU
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The rate function and Nisio semigroup - Il

Assume d metric space U, Af : E x U — R and
L:ExUwr RU{+0c0} s.t.

Hf(x) = sup{Af(z,u) — L(z,u)}

uwelU

VO)f() = sup  {f(x(t)) /[ Ml s)as)

z(-),u(-) €l

', means solving a controlled functional egn

0 / /Af w(dulr)dr, Y € D
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The rate function and Nisio semigroup - |l

I(x(-) :mf{// (duls)ds

<>}

To rigororize above: comparison principle for
(I —aH)f = h.



What is the catch

Classical LDP approach — analysis in path space
(tangent space analysis)
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What is the catch

Classical LDP approach — analysis in path space
(tangent space analysis)

This approach : More emphasize on analysis on
function space (co-tangent space analysis).

variations on path v.s. variations on test functions

Technical subtlety: replace approximation for paths
by proof of comparison principle for PDEs.
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