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Prelude

Outline

© Prelude
@ Freidlin-Wentzell theory for singular diffusions
@ Space of probability measures as a quotient space

J. Feng (University of Kansas) Hamilton-Jacobi PDE in space of Probability



Prelude Freidlin-Wentzell theory for singular diffusions

Small diffusions

dX,(t) = b(X,(s))ds + \%U(Xn(s))dW(s).

o Arf(x) = o > a;j(x)aizjf(x) + b(x) - Vf(x)
0 Haf(x) = 55 35 a5(x)05f (x) + 3|o(x)VF(x)|? + b(x) - VF(x),
e H,f — Hf with

Hf (x) = %|J(X)Vf(x)|2 1 b(x) - VF(x) = H(x, VF(x)).

L(x, q) = supp,{pq — H(x, p)}.
{Xnh,n=1,2,...} satisfies LDP with rate function

(x() = /0 " L(x(s), %(s))ds.
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Prelude Freidlin-Wentzell theory for singular diffusions

Comparison Principle

f —aHf = h.
By available PDE theory, the comparison principle holds if,
@ o, b are Lipschitz, OR

@ o, b are bounded continuous and o (x)o " (x) is uniform
nondegenerate.
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Prelude Freidlin-Wentzell theory for singular diffusions

Comparison Principle singular case

f —aHf = h.
where E = R, and o(x) = /x and

H(x) = o xI0u .

@ The comparison principle is NOT known.

@ Small time heat kernel estimate for
dX(t) = b(X(t))dt + o(X(t))dW(t):

lim lim tlog P(X(n~'t) € B(y,€)|X(0) = x) = —M.

€—0+4 n—o0 t

o Rescaling: let X,(t) = X(n~t).
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Prelude Freidlin-Wentzell theory for singular diffusions

Comparison principle does hold for the singular case

@ A geometrically invariant condition:

2 )
1.2 (x,y) _H, d*(x,y)
€

bo) < (0 4 o).

Take E := (R4, d) where

P(x,y) = inf{ / L(%(s))ds : x(0) = x,x(1) = v} = [v/x — V2.
@ A geometric identity
VXVd2(x, )2 = V39, (= d2(x,) )12

x = d?(x, y) not smooth in classical sense.

A deeper question: Right choice of test functions?

Need for "viscosity extensions”.
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Prelude Space of probability measures as a quotient space

Space of empirical measures:

e x;cRY =12 ... n
@ Ordered X := (x1,...,Xn) v.s un-ordered {x1,...,Xn}.
@ Un-ordered n-points as a permutation invariant element in (RY)"/ ~:

(Xl, v 7Xn) ~ (Xﬂ'(l)? . 'Xﬂ'(n))‘

o Representing (R9)"/ ~ as
1 n
E, = dx) == 6,.(dx),x; € R}
(0(an) = 3 (b0 € B

o Let E :=P(RY) be a kind of limit of E,s.
@ Large deviation, limits and dynamics of HJ equations in E, and in E.

@ Very singular spaces (many "corners” and "edge”) of metric geometry
nature.

@ Metric space analysis tools is natural — theory of mass transport.
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Variational problems in space of probability measures

Outline

e Variational problems in space of probability measures
o Hamilton-Jacobi equations in P(RY)
@ Why are they interesting?
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Variational problems in space of probability measures Hamilton-Jacobi equations in P (?d)

Lagrangian in space of probability measures

o (X,d) := (P2(RY); W) Wasserstein order-2 metric space,
T
ATl = [ Lo et
o A Large Deviation Problem: S(p) := [ plogp+ [Wdp — log Zy and

) 1.
L(p. p) = 57 + gradS(p)|24,,-

@ A Mechanics Problem: ¢, ® smooth and bounded and

1 1
o) = 311, = Vo) V()= [ odpt 5005 p.p)
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Variational problems in space of probability measures Hamilton-Jacobi equations in P (Fd)

Hamiltonian

All Hamiltonians are discontinuous and have a strong form of singularity

@ The Large Deviation Problem:
1
H(p,grad,f) = (—gradS, gradf)_1 , + §||gradf||2,17p.

Feature: Controlled gradient flow in P,(RY).

@ The Mechanics Problem
1
H(p, grad,f) = 5ngaude%l’p + V(p).

Feature: Condensation.
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Variational problems in space of probability measures Hamilton-Jacobi equations in P (?d)

Hamilton-Jacobi equations

In the talk, we solve well-posedness for f — aH(p, grad,f) = h.

@ The Large Deviation Problem: F. &Katsoulakis [ARMA 09], F. &
Kurtz [AMS Book 06], F. & Nguyen [JMPA12].

@ The Mechanics Problem: Ambrosio & F. [JDE 14]. Earlier: Hynd,
Kim, Gangbo, Nguyen, Swiech, Tudorascu
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Variational problems in space of probability measures Why are they interesting?

Why are they interesting?

The Mechanics Problem:
@ Variational formulation of compressible Euler equation

{ O¢p + div(pu) 0
Ot(pu) +div(pu@ u) = —pV(p+ ¢ xp).

o Formally, Hamiltonian flow as time-dependent gradient flow:
p € grad,S(t, p)

@ Understand certain behaviors of compressible Euler equation in R by
lifting it up to the level of Hamilton-Jacobi equation in P,(RY).
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Variational problems in space of probability measures Why are they interesting?

Why are they interesting?

The Large Deviation Problem:

e Mean-field interacting diffusions (more general than the earlier model)

dX; = K * pu(t, X;)dt + \/Edvvl( t), pa(t): 25)(

@ LDP rate function as Boltzmann entropy in path space

im Tim —log P(pu(") € B(p()) = Ar(p(")).

e—0 n—o0
o Feng&Kurtz [06] "Large Deviation for Stochastic Processes”
@ Hamiltonian for Markov process {pn(-)} : Hof(p) := e~ A,e";
Q@ H,—H;

© Exp. tightness;
© Comparison principle for resolvent eqn of H.
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The LDP Problem (A simplified versi

Outline

© The LDP Problem (A simplified version):
@ Optimal transport
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The LDP Problem (A simplified version):

LDP for infinite particles

o LDP for dX; = V2dW; — VV(X;)dt,
pn(t, dx) 125)((15) (dx).
@ For "polynomial” fs:
Hf(p) = (Ap + div(pVV), — /\V

@ The above is in fact,

1
Hf (p) = (—gradSu(p), gradf(p))-1, + 5 llgradf (p)[I%1,,

@ What is the supporting notion of differential structure ?
@ The answer: The Otto calculus, formalized by Ambrosio-Gigli-Savare.
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The LDP Problem (A simplified version): Optimal transport

The tangent space of P,(RY)

E := Py(RY).
o Identify v € T,E in O:p + div(pv) = 0 with p = Orp. How?
o 1Ml = 5Up e ooy (200 ) — s [Vipl2dlp},
o e Hop(RY) = {m e D'(RY) : |Im] 1, < o}

< veT,E.
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The LDP Problem (A simplified version): Optimal transport

A differential structure on P,(IR9)

@ Directional derivative along smooth direction p € C2°

i

Op + div(pVp) = 0.

o Gradient
DPf(p(0)) = (grad f(p(0)), p).

e Why? A property
(m, =V (pVp))-1, = (m,p).

of

grad f(p) = —V(pV%)-
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The LDP Problem (A simplified version): Optimal transport

The Otto calculus on P,(RY)

o Let S(p) = [ plog pdx, then

—Ap=-V- (prp) =grad S.

o Let J
Selp) = 5(0) + [ vp+1og 2 = [1og 2.
¥ =Z"te Vdx. Then
grad Sy(p) = —Ap — V(pVV).

o Fokker-Planck equation is p = —gradSy.
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The LDP Problem (A simplified version): Optimal transport

Comparison principle holds

(I —aH)f = h

o Hf(p) = (—grad Su,grad )1, + 3/lgradf ()| 1 -
@ Optimal controlled gradient flow

. 1
p=—grad Sy(p) +m, Llp,m)=5[m[%y,.

o F.&Kurtz and F.&Katsoulakis : This HJ equation is well-posed, in
particular, the comparison holds.
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The LDP Problem (A simplified version): Optimal transport

Choice of test functions, useful for comparison

@ Choice of test functions:
fo(p) = ad?(p,7) + €S(p),
fi(y) = —ad?(p,7) = S(7)-
@ Lyapunov functional: (/ is Fisher information)
1
HeS(p) = —e(1 = 5e)I(p)-

@ Wasserstein metrilc
d2(p.7) = inf{ 2 16l121 0y : £(0) = p, (1) = 7.
@ Brenier, Otto, Ambrosio-Gigli-Savare, Villani....

1
lgrad, 50%(p. )12 1, = d*(p.7) = llgrad, dz(m)u’im
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The LDP Problem (A simplified version): Optimal transport

Estimate

o HWI inequality:

Su(p) — Su(v) < Cu(d(p, )V 1(7) + d*(p,7))-

@ Fisher information

2
Vol dx+/(|va2 — 2AW)dp.

1(p) = llgrad Sul?y, = / !

@ The strong regularization of / helps (mass transport HWI
inequalities...)

Hfy(p) = HA(7) < w(ad?(p,7)).
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The LDP Problem (A simplified version): Optimal transport

Explained using Euclidean space analogy:

Hf (x) := =VS(x)Vf(x) + %|Vf(x)|2.

@ Mass transport version of: |Vy|x — y|?| = |V, (—|x — y[?)|.

e Contraction of flows by —VS, with respect to d(x,y) := |x — y|

—VS(x)Vxd?(x,y) = VS(y)Vyd?(x,y) < Cd*(x, y).
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The LDP Problem (A simplified version): Optimal transport

The case of E := P(RY)

@ If p has Lebesgue density, by Brenier's theory on mass transport

|><|2

gradp = VP, (X) - "5

— p(x),

where ¢ = @7 is the convex optimal potential in the Monge
formulation of d such that (Vy)xp = . In the above,

d?(p,7)
2

d?(p,
lerad, S22z = [ (o= [ x = TlPola) = (p.)

@ Log-Sobolev type/HWI inequality

(gradpd2,gradp(—5)>p + <grad7d2,grad7(—5)>7 < Cd?

@ The strong regularization of / helps to give

Hfy(p) — HA(7) < w(ad®(p,7) +d(p,7))-
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The Mechanics problem

Outline

@ The Mechanics problem
e H-J equation in P»(RY) - inadequate choice of tangent space
o H-J equation in P,(R9) — Geometric tangent cone
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The Mechanics problem H-J equation in 'Pg(]Rd) inadequate choice of tangent space

H-J equation for compressible Euler equations

The continuum mechanics problem

1
Hf (p) := Ellgradf(p)HZ_l,p + V(p).

o Earlier attempts by Gangbo, Nguyen, Tadurascu, Swiech, Hydn, Kim,
... on equivalent re-formulation

Lpv) =5 /@ VPdp—V(p). H(x.€):= /O EPdp+ V(p)

where © := T9 R, RY.
@ Using sub- super-gradients in Wasserstein space.

@ Open Problem: No uniqueness theory (i.e. comparison principle).
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The Mechanics problem H-J equation in 'Pg(]Rd) inadequate choice of tangent space

It should be expected to work, metric nature of P,(R?)

@ Kantorovich formulation of

d?*(p,7) = inf / |x — y[?m(dx, dy)
=7 JRI xR

TI';'# m:p,wi m=

(p,) := those optimal m in the inf problem.
e For every m e I(p,7), let

. dy) = m(dy (). u(x) = [ (= y)m{dyl).

Then grad, (p ) — 4 (equivalent class). (By A.G.S.05)
@ By Jensen, equality holds if and only if v = Txp (map v.s. plan)

d?(p,
lerad, S22 = [ uao < [ [ beoyPmiaybn(an) = o)
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https://A.G.S.05

The Mechanics problem H-J equation in 'Pg(]Rd) inadequate choice of tangent space

What happened

@ The T, did not generate enough velocity fields.

@ There is a metric analysis (hence taking care of singularity of space)
based re-formulation by Ambrosio- Feng 15.

@ When p is singular (i.e. "corned"), certain "direction” in the metric

formulation cannot be modelled by the tangent space here — think of
a Polyhedron.
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The Mechanics problem  H-J equation in P>(RY) Geometric tangent cone

Geometric tangent cone

Idea: relaxed formulation of tangent m(dx, d€) := d,(x)(d&)p(dx).

@ G(p):={me Py(RY x RY): (n, 7l + er?)ym € To(p,7), 37 €
X,e > 0}

@ Dy(my,mz) = inf{ [igays 1€ — n2M(dx; d&, dn) : M €
Po((RY)?), 7*M = my, m° M = my}

@ (m,m), = max{f(Rd)3 EnM(dx; d€, dn) - M € Pg((Rd)"’),ﬂ;’gzM =
m1,7r;fl\/l = m2}

@ [Im|7 := (m,m),

Definition

Tan, = G(p)Dp("'), Tan :=U,Tan,,.

J. Feng (University of Kansas) Hamilton-Jacobi PDE in space of Probability



The Mechanics problem  H-J equation in P>(RY) Geometric tangent cone

Geometric tangent cone continued

T, <= Tan,. When p(dx) = p(x)dx, the embedding is isometric and 1 — 1,
generally the inclusion is strict.
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The Mechanics problem  H-J equation in ’Pg(]Rd) Geometric tangent cone

sub-, super-differential calculus

@ Fréchet super-differentials for f : X — R. n € 8;“f if there exists a
modulus wy such that, for every p; € X and every M € P,((R9)3)
with (71, 71 +72)4M € To(p, p1) and 7r;l§;3 = n, we have

(o) ~ ) < [ (6 n)M(d )+ dlp. pr)entelp. i) (1)

© Similarly define (sub-) derivative. n € 9, f.
Q@ If =9t fFNoaf.
Q@ nom:={n:= (7!, 7+ 7T3)#N,7T;£’2N = n,7r;#’3N =m}.

001 © 0'pp C O (1 + p2)
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The Mechanics problem  H-J equation in P>(RY) Geometric tangent cone

Geometric Hamiltonian

Q@ f—Hof <hand f —Hif > h.
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The Mechanics problem  H-J equation in ’Pg(]Rd) Geometric tangent cone

Lagrangian and Hamiltonian geometric tangent cone

P2(R9) is a quotient space.

@ m(dx, dv) := m(dv|x)p(dx) in stead of (p(dx), v(x)).
@ L(m):= L|m|2— V(p) and H(n) == L[in|2 + V(p):
@ Hof(p) :=inf{H(n) :n € dff NTan,};
@ Hif(vy) :=sup{H(n) :n €9, fNTan,}.

(Ambrosio-Fengl5.) The HJ equation in the geometric tangent cone
formulation is well posed. In particular, comparison principle holds.
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