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Prelude 

Outline 

1 Prelude 
Freidlin-Wentzell theory for singular diffusions 
Space of probability measures as a quotient space 

2 Variational problems in space of probability measures 
Hamilton-Jacobi equations in P2(Rd)  

Why are they interesting? 

3 The LDP Problem (A simplified version): 

4 The Mechanics problem 

Optimal transport  

H-J equation in P2(Rd) - inadequate choice of tangent space  

H-J equation in P2( ) – Geometric tangent cone Rd 
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Prelude Freidlin-Wentzell theory for singular diffusions 

Small diffusions 

dXn(t) = b(Xn(s))ds + √1 σ(Xn(s))dW (s).
n P 

  Anf (x) = 1
ij aij (x)∂

2
ij f (x) + b(x) · rf (x) 2n 

H 1 P  
nf (x) = ij aij (x)∂

2f (x) + 1 |σ(x)rf (x)|2 + b(x) · rf (x), 2n ij 2 

Hnf → Hf with 

1 
Hf (x) =  |σ(x)rf (x)|2 + b(x) · rf (x) = H(x , rf (x)). 

2 

L(x , q) = supp  {pq − H(x , p)}.
{Xn, n = 1, 2, . . .} satisfies LDP with rate function Z ∞ 

I (x(·)) = L(x(s), ẋ(s))ds. 
0 

5th, y, 
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Prelude Freidlin-Wentzell theory for singular diffusions 

Comparison Principle 

f − αHf = h. 

By available PDE theory, the comparison principle holds if, 

σ, b are Lipschitz, OR 

σ, b are bounded continuous and σ(x)σT (x) is uniform 
nondegenerate. 
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Prelude Freidlin-Wentzell theory for singular diffusions 

Comparison Principle singular case 

f − αHf = h. 
√ 

where E = R+ and σ(x) = x and 

1 
Hf (x) = x |∂x f |2 . 

2 

The comparison principle is NOT known. 

Small time heat kernel estimate for 
dX (t) = b(X (t))dt + σ(X (t))dW (t): 

−1lim lim t log P(X (n t) ∈ B(y , �)|X (0) = x) = − . 
�→0+ n→∞ t 

d2(x , y)

Rescaling: let Xn(t) = X (n−1t). 
5th, y, 
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Prelude Freidlin-Wentzell theory for singular diffusions 

Comparison principle does hold for the singular case 

A geometrically invariant condition: 

d2(x , y) −d2(x , y) d2(x , y)
Hx − Hy ≤ ω( + d2(x , y)). 

� � � 

Take E := (R+, d) where Z 1 

d2(x , y) := inf{ L(ẋ(s))ds : x(0) = x , x(1) = y} = | x − y |2 . 
0 

√ √ 

A geometric identity 

√ � �√ | xrx d
2(x , y)|2 =  | yry − d2(x , y) |2. 

x 7→ d2(x , y) not smooth in classical sense. 

A deeper question: Right choice of test functions? 

Need for ”viscosity extensions”. 
5th, y, 
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Prelude Space of probability measures as a quotient space 

Space of empirical measures: 

 xi ∈ Rd , i = 1, 2, . . . , n. 
Ordered ~x := (x1, . . . , xn) v.s un-ordered {x1, . . . , xn}. 
Un-ordered n-points as a permutation invariant element in (Rd )n/ ∼: 

(x1, . . . , xn) ∼ (xπ(1), . . . xπ(n)). 

Representing (Rd )n/ ∼ as 

nX1 
En := {ρ(dx) := δxi (dx), xi ∈ Rd }. 

n 
i=1 

 Let E := P(Rd) be a kind of limit of Ens. 
Large deviation, limits and dynamics of HJ equations in En and in E . 
Very singular spaces (many ”corners” and ”edge”) of metric geometry 
nature. 
Metric space analysis tools is natural – theory of mass transport. 

5th, y, 
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Variational problems in space of probability measures 

Outline 

1 Prelude 
Freidlin-Wentzell theory for singular diffusions 
Space of probability measures as a quotient space 

2 Variational problems in space of probability measures 
 Hamilton-Jacobi equations in P2(Rd) 

Why are they interesting? 

3 The LDP Problem (A simplified version): 

4 The Mechanics problem 

Optimal transport 

H-J equation in P2(Rd) - inadequate choice of tangent space  

H-J equation in P2(Rd) – Geometric tangent cone  
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Variational problems in space of probability measures Hamilton-Jacobi equations in P2(Rd ) 

Lagrangian in space of probability measures 

(X, d) := (P2(Rd ); W2) Wasserstein order-2 metric space, Z T 

AT [ρ(·)] := L(ρ, ρ̇)dt. 
0 R R 

A Large Deviation Problem: S(ρ) := ρ log ρ + Ψdρ − log ZΨ and 

1 
L(ρ, ρ̇) := kρ̇ + gradS(ρ)k2 

−1,ρ. 2 

A Mechanics Problem: φ, Φ smooth and bounded and Z 
1 1 

L(ρ, ρ̇) := kρ̇k2 V (ρ) := φdρ + hΦ ∗ ρ, ρi.−1,ρ − V (ρ),
2 Rd 2 

5th, y, 
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Variational problems in space of probability measures Hamilton-Jacobi equations in P2(Rd ) 

Hamiltonian 

All Hamiltonians are discontinuous and have a strong form of singularity 

The Large Deviation Problem: 

1 
H(ρ, gradρf ) = h−gradS , gradf i−1,ρ + kgradf k2 

−1,ρ. 2 

Feature: Controlled gradient flow in P2(Rd ). 

The Mechanics Problem 

1  H(ρ, gradρf ) = kgradf k2−1,ρ + V (ρ). 
2 

Feature: Condensation. 

5th, y, 
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Variational problems in space of probability measures Hamilton-Jacobi equations in P2(Rd ) 

Hamilton-Jacobi equations 

In the talk, we solve well-posedness for f − αH(ρ, gradρf ) = h. 

The Large Deviation Problem: F. &Katsoulakis [ARMA 09], F. & 
Kurtz [AMS Book 06], F. & Nguyen [JMPA12]. 

The Mechanics Problem: Ambrosio & F. [JDE 14]. Earlier: Hynd, 
Kim, Gangbo, Nguyen, Swiech, Tudorascu 

5th, y, 
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Variational problems in space of probability measures Why are they interesting? 

Why are they interesting? 

The Mechanics Problem: 

Variational formulation of compressible Euler equation � 
∂t ρ + div(ρu) = 0 

∂t (ρu) + div(ρu ⊗ u) = −ρr(φ +Φ ∗ ρ). 

Formally, Hamiltonian flow as time-dependent gradient flow: 

ρ̇ ∈ gradρS(t, ρ) 

Understand certain behaviors of compressible Euler equation in Rd by 
lifting it up to the level of Hamilton-Jacobi equation in P2(Rd ). 

5th, y, 
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Variational problems in space of probability measures Why are they interesting? 

Why are they interesting? 

The Large Deviation Problem: 

Mean-field interacting diffusions (more general than the earlier model) 

√ 1 X 
dXi = K ∗ ρn(t, Xi )dt + 2νdWi (t), ρn(t) := δXi (t). n 

i 

LDP rate function as Boltzmann entropy in path space 

1 
lim lim − log P(ρn(·) ∈ B�(ρ(·)) = AT (ρ(·)). 
�→0 n→∞ n 

Feng&Kurtz [06] ”Large Deviation for Stochastic Processes” : 
  Hamiltonian for Markov process {ρ (·)} : H f (ρ) := 1e−nf A enf 1 n n n ;n 

2 Hn → H; 
3 Exp. tightness; 
4 Comparison principle for resolvent eqn of H. 

5th, y, 
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The LDP Problem (A simplified version): 

Outline 

1 Prelude 
Freidlin-Wentzell theory for singular diffusions 
Space of probability measures as a quotient space 

2 Variational problems in space of probability measures 
Hamilton-Jacobi equations in P2(Rd)  

Why are they interesting? 

3 The LDP Problem (A simplified version): 

4 The Mechanics problem 

Optimal transport 

 H-J equation in P2(Rd) - inadequate choice of tangent space 
H-J equation in P2(Rd) – Geometric tangent cone  
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The LDP Problem (A simplified version): 

LDP for infinite particles 

√ 
LDP for dXi = 2dWi −rΨ(Xi )dt, X 

ρN (t, dx) = N−1 δXi (t)(dx). 
i 

For ”polynomial” f s: Z 
δf 1 δf 

Hf (ρ) = hΔρ + div(ρrΨ), i + |r |2dρ. 
δρ 2 δρ 

The above is in fact, 

1 
Hf (ρ) = h−gradSΨ(ρ), gradf f  (ρ)i−1,ρ + kgrad (ρ)k2−1,ρ. 2 

What is the supporting notion of differential structure ? 

The answer: The Otto calculus, formalized by Ambrosio-Gigli-Savare. 
5th, y, 
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The LDP Problem (A simplified version): Optimal transport 

The tangent space of P2(Rd ) 

E  := P2(Rd). 

Identify v ∈ TρE in ∂t ρ + div(ρv) = 0 with ρ̇ = ∂t ρ. How? R 
 kmk2 2
1  := supϕ∈C ∞(Rd − ){2hϕ, mi − |rϕ|,ρ dρ},

c Rd 

ρ̇ ∈ H−1,ρ(Rd )  := {m ∈ D0(Rd) : kmk−1,ρ < ∞} 

⇔ v ∈ TρE . 

5th, y, 
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The LDP Problem (A simplified version): Optimal transport 

A differential structure on P2(Rd ) 

Directional derivative along smooth direction p ∈ C ∞ 
c 

f (ρ(t)) − f (ρ(0))
Dpf (ρ(0)) := lim , 

t→0+ t 

∂t ρ + div(ρrp) = 0. 

Gradient 
Dpf (ρ(0)) = hgrad f (ρ(0)), pi. 

Why? A property 

hm, −r(ρrp)i−1,ρ = hm, pi. 

δf 
grad f (ρ) = −r(ρr ). 

δρ 

5th, y, 
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The LDP Problem (A simplified version): Optimal transport 

The Otto calculus on P2(Rd ) 

R 
Let S(ρ) = ρ log ρdx , then 

rρ −Δρ = −r · (ρ ) = grad S . 
ρ 

Let Z Z 
dρ 

SΨ(ρ) = S(ρ) + Ψdρ + log Z = log dρ,
dµΨ 

Ψ = Z −1µ e−Ψdx . Then 

grad SΨ(ρ) = −Δρ −r(ρrΨ). 

Fokker-Planck equation is ρ̇ = −gradSΨ. 

5th, y, 
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The LDP Problem (A simplified version): Optimal transport 

Comparison principle holds 

(I − αH)f = h 

 Hf (ρ) = h−grad S 1
Ψ, grad f i−1,ρ + kgradf (ρ)k22 −1,ρ. 

Optimal controlled gradient flow 

1 
ρ̇ = −grad SΨ(ρ) + m, L(ρ, m) = kmk2 

−1,ρ. 2 

F.&Kurtz and F.&Katsoulakis : This HJ equation is well-posed, in 
particular, the comparison holds. 

5th, y, 
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The LDP Problem (A simplified version): Optimal transport 

Choice of test functions, useful for comparison 

Choice of test functions: 

f0(ρ) = αd2(ρ, γ) + �S(ρ), 

f1(γ) = −αd2(ρ, γ) − �S(γ). 

Lyapunov functional: (I is Fisher information) 

1 
H�S(ρ) = −�(1 − �)I (ρ). 

2 

Wasserstein metric R 
d2(ρ, γ) := inf{ 1 kρ̇k2 

− dr : ρ(0) = ρ, ρ(1) = γ}.0 1,ρ(r) 

Brenier, Otto, Ambrosio-Gigli-Savare, Villani.... 

1 1 kgradρ d2(ρ, γ)k2 
−1,ρ = d2(ρ, γ) = kgradγ d2(ρ, γ)k2 

−1,γ . 2 2 
5th, y, 
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The LDP Problem (A simplified version): Optimal transport 

Estimate 

HWI inequality: p
SΨ(ρ) − SΨ(γ) ≤ CΨ(d(ρ, γ) I (γ) + d2(ρ, γ)). 

Fisher information Z  Z 
 |rρ|2

I (ρ) = kgrad SΨk2−1,ρ = dx  + (|rΨ|2 − 2ΔΨ)dρ.
ρ 

The strong regularization of I helps (mass transport HWI 
inequalities...) 

Hf0(ρ) − Hf1(γ) ≤ ω(αd2(ρ, γ)). 

5th, y, 
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The LDP Problem (A simplified version): Optimal transport 

Explained using Euclidean space analogy: 

1 
Hf (x) := −rS(x)rf (x) + |rf (x)|2 . 

2 

Mass transport version of: |rx |x − y |2| = |ry (−|x − y |2)|. 
Contraction of flows by −rS , with respect to d(x , y) := |x − y | 

−rS(x)rx d
2(x , y) −rS(y)ry d

2(x , y) ≤ C d2(x , y). 

5th, y, 
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The LDP Problem (A simplified version): Optimal transport 

The case of E := P(Rd ) 

If ρ has Lebesgue density, by Brenier’s theory on mass transport 

d2(ρ, γ) |x |2 

gradρ = rp, p(x) := − ϕ(x),
2 2 

where ϕ := ϕρ,γ is the convex optimal potential in the Monge 
formulation of d such that (rϕ)#ρ = γ. In the above, Z Z 

d2(ρ, γ)k2kgradρ = |rp|2dρ = |x −rϕ(x)|2ρ(dx) = d2(ρ, γ). 
2 ρ 

Rd 

Log-Sobolev type/HWI inequality 

hgradρd2 , gradρ(−S)iρ + hgradγ d
2 , gradγ (−S)iγ ≤ C d2 

The strong regularization of I helps to give 

Hf0(ρ) − Hf1(γ) ≤ ω(αd2(ρ, γ) + d(ρ, γ)). 

5th, y, 
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The Mechanics problem 

Outline 

1 Prelude 
Freidlin-Wentzell theory for singular diffusions 
Space of probability measures as a quotient space 

2 Variational problems in space of probability measures 
Hamilton-Jacobi equations in P2(Rd ) 
Why are they interesting? 

3 The LDP Problem (A simplified version): 

4 The Mechanics problem 

Optimal transport 

 H-J equation in P2(Rd) - inadequate choice of tangent space 
H-J equation in P2(Rd) – Geometric tangent cone  

5th, y, 
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The Mechanics problem H-J equation in P2(Rd ) inadequate choice of tangent space 

H-J equation for compressible Euler equations 

The continuum mechanics problem 

1 
Hf (ρ) := kgradf  (ρ)k2−1,ρ + V (ρ). 

2 

Earlier attempts by Gangbo, Nguyen, Tadurascu, Swiech, Hydn, Kim, 
. . . on equivalent re-formulation Z Z 

1 1 
L(ρ, v) := |v |2dρ − V (ρ), H(x , ξ) := |ξ|2dρ + V (ρ)

2 2O O 

where O := Td , R1 , Rd . 

Using sub- super-gradients in Wasserstein space. 

Open Problem: No uniqueness theory (i.e. comparison principle). 

5th, y, 
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The Mechanics problem H-J equation in P2(Rd ) inadequate choice of tangent space 

It should not be expected to work, metric nature of P2(Rd ) 

Kantorovich formulation of Z 
d2(ρ, γ) := inf  |x − y |2m(dx , dy) 

π1  m=ρ,π2 m=γ Rd ×Rd 
# # 

Γ(ρ, γ) := those optimal m in the inf problem. 

For every m ∈ Γ(ρ, γ), let Z 
m(dx , dy) := m(dy |x)ρ(dx), u(x) := (x − y)m(dy |x). 

Rd 

d2(ρ,γ)Then gradρ 2 = u (equivalent class). (By A.G.S.05) 

By Jensen, equality holds if and only if γ = T#ρ (map v.s. plan) Z Z Z 
d2(ρ, γ)kgradρ k2 = |u|2dρ ≤ |x−y |2 m(dy |x)ρ(dx) = d2(ρ, γ)
2 ρ 

Rd 

5th, y, 
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The Mechanics problem H-J equation in P2(Rd ) inadequate choice of tangent space 

What happened 

The Tρ did not generate enough velocity fields. 

There is a metric analysis (hence taking care of singularity of space) 
based re-formulation by Ambrosio- Feng 15. 

When ρ is singular (i.e. ”corned”), certain ”direction” in the metric 
formulation cannot be modelled by the tangent space here – think of 
a Polyhedron. 

5th, y, 
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The Mechanics problem H-J equation in P2(Rd ) Geometric tangent cone 

Geometric tangent cone 

Idea: relaxed formulation of tangent m(dx , dξ) := δu(x)(dξ)ρ(dx). 

1    m Rd ( 1
2   G (ρ) := { ∈ P ( × Rd) : π , π1 + �π2)#m ∈ Γo (ρ, γ), ∃γ ∈ 

X, � > 0} R 
2 Dρ(m | 2

1, m2) := inf{ d 3 ξ − η| M(dx ; dξ, dη) : M ∈ (R )

Rd 3  1,2    1m ,3P2(( ) ), π  M = 1, π  M = # m2}# R 
3  1,2hm1, m2iρ := max{ d 3 ξηM(dx ; dξ, dη) : M ∈ P  (R 2((Rd)3), π M =) # 

1 3 m  ,1, π M = m2}# 

4  kmk2ρ := hm, miρ 

Definition 

Tanρ := G (ρ) 
Dρ(·,·) 

, Tan := ∪ρTanρ. 

5th, y, 
J. Feng (University of Kansas) Hamilton-Jacobi PDE in space of Probability / 32 



The Netherlands 29

–

-

Measures
June Kac Lecture at Utrecht Universit

The Mechanics problem H-J equation in P2(Rd ) Geometric tangent cone 

Geometric tangent cone continued 

Lemma 
Tρ ,→ Tanρ. When ρ(dx) = ρ(x)dx, the embedding is isometric and 1 − 1, 
generally the inclusion is strict. 

5th, y, 
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The Mechanics problem H-J equation in P2(Rd ) Geometric tangent cone 

sub-, super-differential calculus 

1 Fréchet super-differentials for f : X 7→ R̄. n ∈ ∂+
ρ f if there exists a 

 modulus ωn such that, for every ρ1 ∈ X and every M ∈ P2((Rd)3) 
with (π1, π1 + π2 1)#M ∈ Γo (ρ, ρ1) and ,3 π  = n, we have#Z 
f (ρ1) − f (ρ) ≤ (ξ · η)M(dx ; dξ, dη) + d(ρ, ρ1)ωn(d(ρ, ρ1)) (1) 

(Rd )3 

4 n ⊕ m := {n := (π1, π2 1,2 1,3 + π3)#N, π N = n, π N = m}.

ρ 
−2 Similarly define (sub-) derivative. n ∈ ∂ f . 

−3 ∂f := ∂+f ∩ ∂ f . 

# # 

Lemma 

∂i ∂ϕ1 ⊕ ∂i ϕ2 ⊂ ∂i (ϕ1 + ϕ2) 

5th, y, 
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1 

The Mechanics problem H-J equation in P2(Rd ) Geometric tangent cone 

Geometric Hamiltonian 

f − H0f ≤ h and f − H1f ≥ h. 

5th, y, 
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The Mechanics problem H-J equation in P2(Rd ) Geometric tangent cone 

Lagrangian and Hamiltonian geometric tangent cone 

P2(Rd ) is a quotient space. 

1 m(dx , dv) := m(dv |x)ρ(dx) in stead of (ρ(dx), v(x)). 
2 L   (m) := 1kmk2ρ − V (ρ) and H(n) := 1knk2ρ + V (ρ);2 2 
3 H0f (ρ) := inf{H(n) : n ∈ ∂+

ρ f ∩ Tanρ}; 
4 H1f (γ) := sup{H(n) : n ∈ ∂−γ f ∩ Tanγ }. 

Theorem 
(Ambrosio-Feng15.) The HJ equation in the geometric tangent cone 
formulation is well posed. In particular, comparison principle holds. 

5th, y, 
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